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Abstract

In this paper we report on a new semi-phenomenological approach to predict the stress relaxation behavior of thermoplastic elastomers at

long times. This approach relies on the method of Gurtovenko and Gotlib [J Chem Phys 115 (2001) 6785], which has originally been

conceived to describe the relaxation dynamics of inhomogeneously crosslinked polymers forming agglomerations of crosslinks. In this work

we demonstrate that the method can be extended to predict the stretched exponential stress decay of homogeneously crosslinked

thermoplastic elastomers, which are subjected to an extensional strain pertaining to the nonlinear regime of mechanical properties. In our

approach thermal fluctuations induce fluctuations in size of domains of crosslinks via a chain-pullout mechanism. We compare our

theoretical predictions to the experimental measurements of Hotta et al. [Macromolecules 35 (2002) 271] performed on poly(styrene-

isoprene-styrene) triblock copolymers, which are composed of hard domains of polystyrene embedded in a rubbery polyisoprene matrix. Our

study confirm the importance of the chain-pullout mechanism in the stress relaxation process and demonstrates the involvement of multiple

time- and structural-length-scales.

q 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Thermoplastic elastomers are high performance elasto-

mers engineered to enhance the performance capabilities of

a wide spectrum of end products and applications. For

example, the poly(styrene-isoprene-styrene) (SIS) triblock

copolymers are generally used for pressure sensitive

applications, where durability and elasticity are important.

For high molecular weights and at low temperatures the two

endblocks composed of polystyrene (PS) are thermodyna-

mically incompatible with the midblock composed of

polyisoprene (PI). This causes the system to microphase

separate into soft and hard domains both being rich in either

one of the components. Depending on the volume fraction

of one block, the microphase separated structure may be
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periodically arranged in spherical or cylindrical domains of

one component in a continuous matrix of the other

component or it may be arranged in a lamellar structure in

which the two components alternate [1]. As a consequence

of the emergence of new high-performance catalysts many

more exciting morphologies have been discovered recently

[2–5]. It appears, however, that testing all novel materials

for all their properties is a very time-consuming and cost-

intensive task. Therefore, new theoretical approaches,

which can explain and reliably predict their properties, are

of inestimable interest and can open new perspectives for

many new technological innovations [6–8].

Among many challenges, the prediction and under-

standing of the stress relaxation behavior is of particular

importance, because it provides informations about the

molecular mechanisms affecting the macroscopic properties

of the material. The stress relaxation behavior of thermo-

plastic elastomers at long times has been studied in several

experimental investigations [9]. Chasset and Thirion [10]

recognized that an excellent representation of their data at
Polymer 46 (2005) 4344–4354
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long times t[tp is given by a power-law equation of the

type

EðtÞzEt/N½1C ðt=tpÞ
Kg� (1)

where E(t) is the isothermal relaxation modulus. The

parameter Et/N is the equilibrium modulus, while g and

tp are material parameters. In later investigations it has been

established that Et/N and tp depend on the temperature and

crosslink density of the material [11,12], while g does not

[13]. Ferry [11] has speculated that the molecular processes

associated with the power-law decay are related to the

relaxation of loops and free dangling chains attached to the

hard domains in the polymer network. He assumed that their

relaxation is slow because of the presence of entanglements,

which act as topological constraints. This picture has been

confirmed by the studies of Curro and Pincus [11,12].

However, from stress relaxation experiments on several

thermoplastic elastomers it is well-known that above a

characteristic temperature deviations from power-law

behavior do occur [9,14]. Smith [9] concluded from his

experiments on a poly(styrene-butadiene-styrene) (SBS)

triblock copolymer that the deviations are due to plastic flow

and breakup of the domains, which he presumed to be

relatively soft at these temperatures. Hotta et al. [14]

deduced from their experimental investigations that their

SIS copolymers undergo a stretched exponential stress

relaxation of the type

EðtÞzEts/N exp½Kðt=tsÞ
b� (2)

where 0!b!1 and E(t) is the time-dependent effective

extensional modulus defined through the stress–strain

convolution integral

sðtÞZ

ð
EðtK t 0Þ

d3ðt 0Þ

dt 0
dt 0 (3)

with Ets/N as the modulus for ts/N. They suggested that

the stretched exponential decay might be the result of a

readjustment of the network, taking place through a chain-

pullout mechanism.

Relaxation phenomena obeying a stretched exponential

decay behavior have been found in several relaxation

processes, such as, e.g. in the relaxation of glasses, polymers

and gels [15]. Their occurrence is generally attributed to the

existence of a disorder or/and strong interactions in the

system, which cause a superposition of different exponential

processes or a superposition of intrinsically non-exponential

processes. For example, in Ngai’s approach [16] the

relevant network units relax independently obeying an

exponential relaxation at times t!tc, where tc represents a

characteristic crossover time. At tOtc these units undergo a

transition to a stretched exponential-type relaxation due to

strong interactions with neighboring units, causing a

constrained motion and therefore a slowing down of the

relaxation. In a recent paper Gurtovenko and Gotlib [15]

demonstrated that a stretched exponential decay in an
inhomogeneously crosslinked network may also be caused

by a broad size distribution of non-interacting network

regions each composed of a certain number of relaxing

elements (crosslinks, polydisperse chains, etc.). According

to their approach the behavior is a consequence of structural

heterogeneities in the polymer network, which cause a

superposition of the relaxation processes of the different

domains in the network. These inhomogeneities may, e.g.

occur by applying a mechanical deformation on polymer

films or gels [17,18]. In such cases agglomerations of

crosslinks are created, whose number of relaxing elements

(crosslinks) determine the contribution to the overall

modulus of the relaxation process.

In this paper we investigate the possibility of a stretched

exponential decay behavior of the relaxation modulus in a

homogeneously crosslinked network with transient cross-

links, which forms domains of different number of relaxing

elements if subjected to a nonlinear extensional defor-

mation. These domains are created through thermal

fluctuations inducing themselves fluctuations in the domain

sizes via a chain-pullout mechanism. The domain sizes obey

a probability distribution derived from the equilibrium

fluctuation theorem [19]. We compare our theoretical

predictions to the experimental measurements of Hotta et

al. [14] performed on SIS triblock copolymers with either a

spherical or cylindrical arrangement of PS hard domains in a

rubbery PI matrix. Experimental evidences for the read-

justment of the transient network under deformation are in

particular the persistent change in the sample dimensions

after unloading and the recovery of the original sample

shape at long times and/or upon annealing [14,20]. Hotta et

al. explained this phenomenon by the assumption of a chain-

pullout mechanism.

Our paper is structured in the following way. In Section 2

we introduce the theoretical approach employed in this

work, followed in Section 3 by a brief recall of the stress

relaxation experiments performed by Hotta et al. with the

different SIS morphologies. Afterwards, in Section 4 we

derive the probability distribution of the domain sizes using

the equilibrium fluctuation theorem, while in Section 5 we

present the results of our theoretical investigation in

comparison to the experimental measurements mentioned

previously. Finally, we end the paper by conclusions and a

brief outlook.
2. Theoretical model

2.1. Relaxation of domains of crosslinks

We start with the introduction of the domain-model

approach of Gurtovenko and Gotlib, which describes the

relaxation dynamics of polymer network structures

embedded in an effective viscous medium. To this end, let

us consider a crosslinked polymer as an ensemble of

network regions (domains) each having a finite number of
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crosslinks (relaxing elements). All the domains possess a

homogeneous internal network structure and consist of n

relaxing elements connected with each other in an arbitrary

way. In Fig. 1, we show a sketch of the domain model in

case of a SIS copolymer. We see that the system forms

domains of crosslinks via a chain-pullout mechanism. Inside

the domains the network consists of a regular homogeneous

arrangement of spherical PS micelles, which are inter-

connected by bridging chains of PI. This property permits to

treat the polymer inside the domains as a network composed

of regularly arranged junctions connected by coarse-grained

effective chains. On the junctions free dangling chains and

loops are attached, responsible for the slow power-law

decay inside the domains. We emphasize that the model can

easily be generalized to other phase morphologies, like, e.g.

the hexagonally packed cylinders of PS embedded in a PI

matrix. Now, let us focus on the long-time viscoelastic

properties of our crosslinked polymer by determining the

dynamic behavior of such an ensemble of network domains

at long times. The domains distinguish themselves only by

their different number of relaxing elements. Moreover, they

are embedded in an effective viscous medium, which is

common for all the domains and takes into account the

stochastic character of contacts of the chain segments not

explicitly included in the model. Next, we suppose that there

are enough relaxing elements inside the domains and that,

under a nonlinear deformation and upon thermal activation,

our single-domain system splits reversibly into a broad size

distribution of domains and undergoes fluctuations in the

domain sizes via a permanent network readjustment. These

domain size fluctuations are induced by thermal fluctuations

causing fluctuations of stresses on a local scale. Regarded

from a molecular perspective, the forces on a particular

bridging chain decrease the activation barrier of the process

of pulling the chain out of the PS hard domains it connects.

Depending on the local concentration of the physical

entanglements in the PI matrix, the pullout process

propagates in a fracture-like fashion at low entanglement
Fig. 1. Domains formed in a SIS copolymer under nonlinear tensile

deformation and at temperatures above the characteristic temperature T*.
concentration or, if the propagation is hindered, manifests

itself in form of readjustments by partially pulling the chains

out of the PS hard domains. Both dynamical processes cause

that the copolymer reversibly splits into several domains of

different size. The copolymer under the imposed tensile

strain is driven in a new equilibrium state under the

influence of the external perturbation. The dynamical

equilibrium ensures that the system remains homogeneous

and does not crack, while allowing an efficient stress

relaxation. In the following we further assume in a first

approximation that the different domains relax indepen-

dently of each other with characteristic relaxation times and

boundaries determined by the network fluctuations [21]. We

suppose that these fluctuations essentially occur at the PS–

PI interfaces, as has recently been observed by Alig et al. by

investigating SIS copolymers with lamellar morphology

employing dielectric spectroscopy [22]. The viscoelastic

response of such an ensemble of domains to an external

perturbation can be reproduced by the response of a number

of Maxwell elements connected in parallel [23]. As a

consequence, the overall modulus E(t) of the relaxation

process, given through the stress–strain convolution integral

in Eq. (3), is the result of the superposition of the relaxation

moduli of the different network domains, relaxing indepen-

dently of each other. Gurtovenko and Gotlib demonstrated

that the size distributions of the network domains in

polymers generally obey particular probability distributions

[15,21]. We will show in the following that, to describe

equilibrium fluctuations in the domain sizes, the Gaussian

distribution is a reasonable assumption. Moreover, we will

see that in the terminal relaxation zone all the domains have

relaxed, excepting the one with the maximal amount of

relaxing elements. This causes that in this regime no

superposition is possible anymore, and the domain with the

largest amount of relaxing elements entirely determines the

final relaxation behavior.

2.2. Relaxation inside the domains at short and long times

Let us now suppose that our thermoplastic elastomer at

low temperatures is an elastic solid and obeys a classical

rubber-like power-law relaxation. With growing tempera-

ture the material approaches the glass transition temperature

of the PS hard domains at which the system transforms from

a rubbery solid to a viscous liquid [18]. Above this

temperature the PS hard domains go over in the melt

state, but they remain interconnected by the PI chains. In the

transition region the mechanical properties of the polymer

network are intermediate of the two states and the material

behaves as a critical gel [24,25]. With further increase of the

temperature the material undergoes an additional phase

transformation known as the order–disorder transition,

above which the copolymer chains are randomly distributed

in the system. In this work we are essentially interested in

the regime below the order–disorder transition, where the

chains are phase separated, and we can assume that the
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internal relaxation of the domains of crosslinks is due to the

dangling chains and loops attached to the PS crosslinks [11,

12,14]. In these domains we can suppose a power-law

internal relaxation of the type

Eðt; TÞZEt/NðTÞ 1C
t

t0ðTÞ

� �Kg� �
(4)

where t0(T) characterizes the minimal relaxation time of the

domain which is a function of the temperature T [11]. The

parameter gO0 is the power-law exponent. Since all the

domains of crosslinks consist of the same type of relaxing

elements and have identical internal architecture, the

minimal relaxation time at a given temperature can be

considered to be similar for all the domains.

Alternatively, the viscoelastic properties of a polymer

network can also be described in terms of the relaxation

spectrum H(t), representing the distribution function of

relaxation times t on a logarithmic scale. The quantity is

related to the relaxation modulus E(t) via the formula [26]

EðtÞZEt/NC

ðN
KN

HðtÞ exp½Kt=t�d ln t (5)

Let us now consider the relaxation spectrum H(t, T, n) of a

domain of n number of crosslinks at a temperature T. Since

each domain has a finite size, it can be characterized by a

maximal relaxation time tmax(n), and we can accordingly

write for the relaxation modulus of the domain

Eðt; T ; nÞzEt/NðTÞ

C

ðln tmaxðnÞ

KN
Hðt;T ; nÞ exp½Kt=t�d ln t (6)

The maximum relaxation time tmax(n) represents a specific

time of the network domain, characterizing the maximum

relaxation time of a dangling chain (or loop) surrounded by

the neighboring crosslinks [27]. It separates contributions of

network motions of different length-scales. The intra-chain

and crosslink motions have characteristic times smaller and

greater than tmax(n), respectively. The intra-chain motions,

responsible for the power-law relaxation at t!tmax(n), are

generally attributed to the slow diffusion of the dangling

chains by arm retraction in the presence of topological

constraints in the surrounding medium [11,12]. At times tO
tmax(n) and scales of network motions larger than the

average distances between the crosslinks, the large-scale

collective crosslink motions are excited and their contri-

bution to the overall relaxation modulus becomes predomi-

nant. It is worth noting that the motions of the bridging

chains (inter-chain motions) should be excited at earlier

times than the collective crosslink motions and should

appear on an intermediate branch of the relaxation

spectrum. However, their contribution is expected to be

negligible due to the regularity of the network, which is

taken into consideration by the concept of effective chains.

It is also worth pointing out that at times around tmax(n) the
intra-chain relaxation process begins to provide only a

constant contribution proportional to Et/N(T), which is

independent of time [27]. To derive an explicit expression

for the maximum relaxation time tmax(n), we suppose that

all the domains possess a sufficiently large number of

crosslinks, i.e. n[1. In such cases the relaxation times t

and the distribution of eigenvalues l inside a network

domain can be assumed to be a function of the continuous

variable x, numbering internal relaxation modes. It can

easily be shown that the relaxation time t(x, n, T) of a

specific mode x in a domain of size n is related to the

minimum relaxation time t0(T) through the formula (see

derivation in Appendix A)

tðx; n; TÞzt0ðTÞ
n

x

� �1=g

(7)

Now, if we suppose that at xZ1 all the modes of the domain

have relaxed, we get the maximum relaxation time of the

domain as

tmaxðn;TÞZ tðxZ 1; n; TÞzt0ðTÞn
1=g (8)

We see that, because gO0, the maximum relaxation time of

a domain increases with the number of relaxing elements.

To derive the relaxation modulus of the domain at times tO
tmax(n), we express the relaxation spectrum H in terms of

the continuous variable x, which gives

Hðt; T ; nÞZKEt/NðTÞ
1

n

dx

d ln t
(9)

in the limit of large number of crosslinks in the domain [15,

28]. Next, inserting Eqs. (9) and (7) in Eq. (6), we obtain

Eðt;T ; nÞzEt/NðTÞK
Et/NðTÞ

n

!

ð1
0
exp K

t

t0ðTÞn
1=g

� �
x1=g

� �
dx (10)

which can easily be shown to give

Eðt;T ; nÞ

zEt/NðTÞ 1C
g

n

tmaxðn;TÞ

t

� �
exp K

t

tmaxðn;TÞ

� �� �� �
(11)

where tmax(n, T) is defined by Eq. (8). In conclusion, we

deduce from the result in Eq. (11) that at times tOtmax(n, T)

the relaxation modulus of a domain with n crosslinks is

composed of a product of slow power-law and fast

exponential relaxation. Such a type of time behavior of

the relaxation modulus is caused by the cutoff the relaxation

spectrum of the given domain and is a consequence of its

finite size. Moreover, we see that at long times t[tmax(n,

T) the main contribution to the relaxation modulus of a

domain is provided by the exponential term in Eq. (11).
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2.3. Relaxation of the ensemble of network domains

Next, we derive the overall relaxation modulus E(t, T) of

a polymer network of the type introduced in the previous

sections, which is composed of an ensemble of network

domains. As already mentioned, the quantity is a conse-

quence of the superposition of the relaxation moduli of all

the domains forming the network, which only differ through

their size. In other words, each domain provides its specific

contribution to the total modulus, whose amount depends on

the number of relaxing elements n in the domain. Following

the approach of Gurtovenko and Gotlib, we suppose that the

domain sizes are distributed according to a normalized

distribution function of the following form [15]:

pðnÞ ¼
ns exp½Kand�ÐN

0 ns exp½Kand� dn
(12)

where d and s are parameters characteristic for the type of

network motion under consideration, while a is a parameter

related to the average number of crosslinks in the domains

hni [15]. Next, using the number distribution function in Eq.

(12) for averaging over all the domains, we obtain the

relaxation modulus of the network ensemble in the time

interval t[t0(T).

Eðt;TÞjt[t0ðTÞ
z

ðN
0
pðnÞEðt;T ; nÞjt[tmaxðn;TÞ

dn

ZEt/NðTÞ

ðN
0

ns exp½Kand�ÐN
0 ns exp½Kand� dn

! 1C
g

n

tmaxðn;TÞ

t

� �
exp K

t

tmaxðn;TÞ

� �� �
dn

(13)

Now, by taking into account the dependence of tmax(n,T) on

the number of crosslinks, Eq. (8), and using the saddle-point

procedure for large times t[t0(T), to evaluate the integral

in Eq. (13), we finally obtain

Eðt;TÞzEt/NðTÞ

! 1C
C1

hni

t

t�ðTÞ

� �ðsK3d=2Þ=ð1=gCdÞ

exp K
t

t�ðTÞ

� �d=ð1=gCdÞ
 !" #

(14)

where t* is a characteristic relaxation time determining the

stretched exponential decay and C1 is a constant. It can

easily be shown that t* is proportional to the maximum

relaxation time of the domain realized with maximal

probability tmax(hni,T), i.e. [15]

t�ðhni; TÞZC2tmaxðhni; TÞZC2t0ðTÞhni
1=g (15)

where C2 represents a constant. In conclusion, we deduce

from Eqs. (14) and (15) that the decay behavior of the

overall relaxation modulus at long times is controlled by the

relaxation time t*, which depends on the temperature T and

the average domain size hni.
3. Tensile stress relaxation experiments

In Ref. [14] one of us (A. Hotta) reported on tensile stress

relaxation measurements at different temperatures using SIS

copolymers with a PS weight fraction of 14 and 17%,

respectively. These copolymers form microphase separated

structures, where either spherical or cylindrical hard

domains of PS are embedded in a rubbery PI matrix. Both

copolymers have been provided by Aldrich Chemical

Corporation. The total molecular weight was 245,000 g/

mol for the SIS copolymer of 14% PS and 160,000 g/mol for

the SIS copolymer of 17% PS, which implies a molecular

weight of 17,150 and 13,600 g/mol for each terminal PS

block, respectively. The glass transition temperatures Tg of

the PS and PI phases in both SIS copolymers were measured

by differential scanning calorimetry. Hereby, the Tg of PI

and the Tg of PS were measured at K50 and 65 8C for the

SIS copolymer of 14% PS and K55 and 72 8C for the SIS

copolymer of 17% PS, respectively. The test samples were

homogeneous and transparent, indicating no sign of

degradation. The samples were extended to 125% of their

original length at temperatures between 4 and 90 8C. The

force on the sample and the temperature were measured as a

function of time for 2 days after the deformation.

In these experiments Hotta et al. observed that, below a

characteristic temperature of T*w30 8C, the curves of the

relaxation modulus of both SIS copolymers obey a power-

law decay, which was interpreted as the typical mechanical

response of a permanently crosslinked rubber. In contrast,

they noticed that above T* the relaxation curves show a

faster than power-law decay, which could best be

reproduced by a stretched exponential functional form. In

this regime an apparently non-recoverable change of sample

length at constant crosslink density after a long period of

deformation was observed. In later experiments on similar

materials Dair et al. [20] discovered that, even if the original

sample length is not recovered immediately upon unloading,

it is recovered at long times and/or high temperatures. The

reversibility of the deformation process implies long-time

viscoelasticity and excludes the implication of plastic flow

or breakage of the PS hard domains, which typically cause

permanent irreversible deformations [20]. The phenomenon

has been explained with the existence of transient

crosslinks, which allow under force the pulling out of the

bridging chains from the crosslink aggregates. Based on

differential scanning calorimetry measurements, no evi-

dence for a structural phase transformation at T* could be

found, which is in support of a unique underlying

mechanism.

The equations, that were determined to fit the exper-

imental curves optimally, are recalled in the following.

Below T*, the best fit to the experimental relaxation curves

of the SIS copolymer with 14% PS was obtained using the

following power-law equation:

EðtÞzEt/Nð1C1:6tK0:12Þ (16)
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while above T* the best fit was determined to be a stretched

exponential of the form

EðtÞz835 exp K
t

t�

� �0:2� �
(17)

Similarly, the experimental data of the SIS copolymer with

17% PS was best fitted below T* with the power-law

equation

EðtÞzEt/Nð1C2:2tK0:15Þ (18)

while above T* the best fit to the experimental relaxation

curves was obtained using a stretched exponential of the

type

EðtÞz1088 exp K
t

t�

� �0:2� �
(19)
4. Distribution of domain sizes

To derive an expression for the distribution of domain

sizes in the polymer networks under consideration, we

assume that at long times and above a certain temperature T*

the domains are formed via a chain-pullout mechanism,

induced by network fluctuations on scales larger than the

average distance between the crosslinks. These domains

differ only in their respective number of relaxing elements,

which fluctuates around the average value hni. Using the

fluctuation theorem, it can easily be shown that this number

obeys a Gaussian distribution (see Appendix B)

pðnÞfexp
ðnK hniÞ2

2L2

� �
(20)

which can be reexpressed in the form

pðnÞfgðnÞ exp K
n2

2L2

� �
(21)

where L is the standard deviation and gðnÞ ¼ exp ðnhni=L2Þ:

As the relaxation of the system progresses in time, the

contribution of the domains with large number of crosslinks,

i.e. n[hni, becomes more significant with regard to the

smaller domains and determine the long-time relaxation

behavior. This can easily be made clear by considering the

relaxation function E(t,T,n) of a single domain given in Eq.

(11), which describes its relaxation behavior at times tO
tmax(n,T)zt0(T)n

1/g. The size dependence of tmax(n,T) in

the exponential causes that the small domains relax earlier

than the larger ones and, thus, provide a decreasing

contribution as the relaxation progresses. The effect is

amplified with increasing temperature in the system. In this

situation we must expect a flattening and broadening of the

distribution (20), because the probability of a domain of

average size hni decreases while the standard deviation L

increases. Since in this work we are primarily interested in

the long-time regime, we take into account that n[hni and
approximate g(n) by an as yet undetermined polynomial in

n. This leads then to the following normalized distribution

function of the domains sizes

pðnÞz
ns exp K n2

2L2

h i
ÐN
0 ns exp K n2

2L2

h i
dn

(22)

Comparing Eq. (22) to the general form of the distribution

function in Eq. (12), we deduce that the parameter dZ2.

The parameter s is suitably chosen so that the theoretical

curves reproduce the power-law decay of the SIS copoly-

mers below T*, measured in the experiments described in

the previous section. This condition provides for the

spherical and cylindrical morphology sZ1.76 and 1.7,

respectively. In this context, it also worth emphasizing that

the choice of s does not affect the stretched exponential

index d/(1/gCd) in Eq. (14), which determines the long-

time relaxation above T* [29]. Finally, the g-indices,

characterizing the relaxation inside the domains at times

t!tmax, are obtained from the Eqs. (16) and (18).
5. Results and discussion

Inserting the previously determined d-, s- and g-indices

for the respective morphologies into Eq. (14), we obtain for

the overall effective relaxation modulus of the 14% PS

copolymer in the time interval t0/t!tmax(nmax)

Eðt;TÞ

zEt/NðTÞ 1CCsph

t

t0ðTÞ

� �K0:12

exp K
t

t�ðTÞ

� �0:19� �� �
(23)

and for the overall effective modulus of the 17% PS

copolymer

Eðt;TÞ

zEt/NðTÞ 1CCcyl

t

t0ðTÞ

� �K0:15

exp K
t

t�ðTÞ

� �0:23� �( )

(24)

where Csph and Ccyl are prefactors containing the constants

C1 and C2 of the spherical and cylindrical morphology,

respectively. In the terminal relaxation zone tOtmax(nmax)

we get for both copolymers

Eðt;TÞ

zEt/NðTÞ 1CCtm

t

t0ðTÞ

� �K1

exp K
t

tmaxðnmaxÞ

� �� �
(25)

where Ctm is the prefactor of either the spherical or

cylindrical morphology in the terminal relaxation zone. In

Fig. 2 we show the theoretically and experimentally



Fig. 2. Experimentally and theoretically determined effective extensional modulus versus time at different temperatures of the SIS copolymer with 14% PS,

where spherical PS micelles with cubic phase symmetry are embedded in a PI matrix.
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determined curves of the overall effective extensional

modulus versus time obtained for the SIS copolymer with

spherical morphology at different temperatures. We see that

the functional form (23) derived with our domain-model

approach reproduces qualitatively correctly the experimen-

tal curves at all temperatures in the time interval t0/t!
tmax(nmax). In this regime the relaxation moduli of the

different domains, obeying an exponential decay, super-

impose and provide an overall stretched exponential

relaxation. The deviations observed at longer times

announce the beginning of the terminal relaxation zone

suitably described by the exponential given in Eq. (25). In

this regime only the single domain remains, which possesses

the largest number of relaxing elements and, thus, the

longest relaxation time tmax(nmax). As a consequence, the

contribution of the largest domain determines the final

relaxation behavior, and the overall relaxation modulus

decays exponentially to zero, since at this stage no

superposition is possible anymore. In Fig. 3 we show the

corresponding fitting parameters as a function of tempera-

ture obtained with the Levenberg–Marquardt procedure and

a tolerance of 10K7. We observe that the quantity Et/NðTÞ

as well as t*(T) continuously decrease with increasing

temperature, while Cspht
0:12
0 ðTÞ increases instead. This

clearly demonstrates that with growing temperature the

stretched exponential relaxation mechanism through

domain formation becomes more important with respect to

the power-law relaxation mechanism, involving the relax-

ation of dangling chains and loops. Next, in Fig. 4 we plot

the theoretically and experimentally determined overall

effective extensional modulus versus time of the cylindrical

SIS morphology at different temperatures. In analogy to the

spherical case we see that the functional form of Eq. (24),

obtained with our domain-model approach in the time
interval t0/t!tmax(nmax), reproduces well the exper-

imental curves at all temperatures using the fitting

parameters visualized in Fig. 5. Again, we observe

deviations at longer times, which announce the beginning

of the terminal relaxation zone suitably described by the

exponential given in Eq. (25). To demonstrate this, we fit the

functional form of Eq. (25) to the tail of the long-time record

available at TZ59.9 8C. At this temperature the system is

well-below the glass transition of the PS cylinders, which

has experimentally been determined to be at 72 8C. In the

same way we fit the functional form (25) to the tail of

the relaxation curve of the long-time record available for the

spherical SIS morphology and show the fit in Fig. 2. The

temperature of TZ76.5 8C is slightly above the glass

transition temperature of the PS micelles Tg(PS)Z65.0 8C.

In this regime the SIS copolymer forms a phase-separated

morphology, where the PS micelles are in the melt state and

are loosely interconnected by the PI chains. Under these

conditions the SIS copolymer forms an elastic network,

which behaves as a thermoreversible gel [18]. The noise

observed experimentally relates to the small stresses

encountered in the terminal relaxation zone and are caused

by background fluctuations. The problem of measuring

small fluctuating signals in the terminal relaxation zone is a

typical difficulty encountered in long-time relaxation

experiments [30].

Next, let us investigate how our domain model approach

allows us to successfully describe the power-law and

stretched-exponential regime in an unified framework. By

analyzing the Eqs. (23) and (24), we notice that the

theoretical equations succeed in describing the relaxation

behavior below and above T* through the hni-dependence of

the relaxation time t*. Since from Eq. (15) we know that

t*fhni1/g with gO0, we can conclude that if the system is



Fig. 3. Parameters versus temperature resulting from the fit to equation Eðt;TÞZEt/NðTÞ½1CCspht
0:12
0 ðTÞtK0:12 expðKðt=t�ðTÞÞ0:19Þ� of the SIS copolymer with

14% PS, where spherical PS micelles with cubic phase symmetry are embedded in a PI matrix.
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macroscopically large, i.e. hni/N, and it is only composed

of a single domain, the relaxation time t*/N. Sub-

sequently, applying this limit to the Eqs. (23) and (24), we

see that the theoretical equations predict a power-law

relaxation, which is consistent with the experimental

observations for both SIS copolymers in the regime below

T*. Therefore, the slow power-law decay of the overall

relaxation modulus is caused by the intra-chain relaxation of

loops and dangling chains in a single macroscopically large

domain. At temperatures TOT* and under a nonlinear

strain, the system is subjected to increasing collective

network fluctuations and forms domains of different sizes

via a chain-pullout mechanism. In this regime different
Fig. 4. Experimentally and theoretically determined effective extensional modulu

where hexagonally packed PS cylinders are embedded in a PI matrix.
length-scales come into play, which are characterized by

their respective relaxing elements. As already mentioned,

the stretched exponential relaxation behavior is observed on

length-scales larger than the average distance of the

crosslinks and is due to the superposition of the contri-

butions of domains of different size. Inside the domains, the

stress is found to relax according to a power-law at times t!
tmax(n), while at times tOtmax(n) it is found to relax

according to the exponential decay given by Eq. (11). The

relaxation behavior inside the domains is governed by the

maximum relaxation time tmax(n), which separates the

contributions of network motions on length-scales smaller

and larger than the average distance of the crosslinks. At
s versus time at different temperatures of the SIS copolymer with 17% PS,



Fig. 5. Parameters versus temperature resulting from the fit to equation Eðt; TÞZEt/NðTÞ½1CCcylt
0:15
0 ðTÞtK0:15 expðKðt=t�ðTÞÞ0:23Þ� of the SIS copolymer with

17% PS, where hexagonally packed PS cylinders are embedded in a PI matrix.
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low temperatures the fluctuations in the system are reduced

and, consequently, the size of the domains are very large.

Therefore, only a power-law decay behavior is observed on

experimental accessible time-scales. Moreover, we recog-

nize that the stress relaxation of the SIS copolymers under

nonlinear deformation and upon thermal activation is

influenced by the implication of different time-scales.

Below T*, the fast but inefficient stress relaxation of loops

and dangling chains is the dominant relaxation mechanism,

while at temperatures above T* and at longer times the

relaxation through crosslink-domain formation enables an

efficient stress relief. The efficiency of the latter mechanism

becomes more significant with increasing temperature,

because the higher kinetic energy in the network increases

the frequency of the pullout events. This leads to the

formation of a larger number of domains of smaller size.

Since t*fhni1/g, the stress relaxation through crosslink-

domain formation becomes faster with increasing tempera-

ture, which is in consistency with the experimental

observations of Hotta et al. [14]. To conclude, we emphasize

that the thermoreversible mechanism of chain-pullout also

explains the reversibility of the deformation process at long

times and/or high temperatures observed experimentally

[20], and is also likely to be mainly responsible for the

strain-rate- and temperature-dependence of the mechanical

properties of these materials.
6. Conclusions

In summary, we have shown in this paper that our extended

domain-model approach, originally conceived byGurtovenko

and Gotlib to describe the relaxation dynamics of inhomo-

geneously crosslinked polymers, is also useful to describe the
stress relaxation behavior at long times of homogeneously

crosslinked poly(styrene-isoprene-styrene) copolymers, sub-

jected to a non-linear deformation. Our approach correctly

predicts the power-law decay behavior, experimentally

observed by Hotta et al. below a characteristic temperature

T*, by assuming a macroscopically large single-domain

system of crosslinks. With increasing temperature thermal

fluctuations induce fluctuations in size of domains of

crosslinks, either by a full detachment or by a partial pulling

of the bridging chains out of the PS hard domains. The process

becomes faster andmore probable as the forces on thebridging

chains increase. We correctly predict the experimentally

determined index of the stretched exponential, which governs

the decay behavior of the overall effective extensional

modulus above T*. This result confirms the relaxation

mechanism through domain formation and the importance

of the underlying chain-pullout mechanism in the relaxation

process. However, our conclusions are in opposition to

theoretical interpretations of previousworks, which explained

the deviations in the long-time behavior as a direct

consequence of plastic flow and breakup of the PS hard

domains. In our view the copolymer under the imposed tensile

strain is driven in a new dynamical equilibrium. Finally, it is

also worth emphasizing that the dynamical process of chain-

pullout, which is primarily responsible for the long-time

behavior of the mechanical properties, is likely to play an

important role in the fracture, healing and aging processes of

these materials. To conclude, we point out that our theoretical

investigation also demonstrates that themechanical properties

of thermoplastic elastomers are strongly influenced by

multiple length- and time-scales. Thus, our future research

will focus on the development of new theoretical approaches

that allow a reliable prediction and understanding of their

contribution.
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Appendix A. Maximal relaxation time of a domain

To derive an explicit expression for the maximal

relaxation time of a large domain (n[1), we consider

that its relaxation spectrum H can be expressed as

Hðtðx; n;TÞ;TÞzKEt/NðTÞ
1

n

dx

d ln tðx; n; TÞ
(A1)

where t(x,n,T) denotes the relaxation time and x the

continuous relaxation mode variable. On the other hand, a

rather slow power-law decay of E(t,T) inside the domains

permits to apply Alfrey’s approximation [15,26] on Eq. (4)

and to find the approximate behavior of the relaxation

spectrum

aHðtðx; n;TÞ;TÞzK
dEðt;TÞ

d ln t
jt¼tðx;n;TÞ

¼ Et/NðTÞg
tðx; n;TÞ

t0ðTÞ

� �Kg

(A2)

From Eq. (A2), we conclude that inside the domains the

relaxation spectrum obeys a power-law decay. Since the

domains of crosslinks have finite sizes, they each possess an

individual maximal relaxation time tmax. One can easily

show this by setting Eq. (A1) equal to Eq. (A2) and,

subsequently after variable separation, integrating from xZ
0 to x and tZN to t(x), respectively. This leads then to the

following relation between the relaxation times:

tðx; n;TÞzt0ðTÞ
n

x

� �1=g

(A3)

Now, inserting xZ1 in Eq. (A3), immediately provides the

maximal relaxation time as

tmaxðn;TÞZ tðxZ 1; n;TÞzt0ðTÞn
1=g (A4)

where the exponent gO0. From Eq. (A4), we deduce that

the maximum relaxation time of a domain indeed depends

on the number of elements n in the domain and goes to

infinity as n/N.
Appendix B. General theory of fluctuations

Let us consider a non-insulated subsystem of n crosslinks

inside a large homogeneously network system in equili-

brium. The state of the subsystem can be characterized by

some value n fluctuating in equilibrium around the average
size hni. According to the fluctuation theorem the probability

of a fluctuation is [19]

pðnÞfexp K
RminðnÞ

kBT

� �
(B1)

where Rmin is the minimal work to create the fluctuation.

The minimal work has two components

Rmin ZRint CRext (B2)

where Rint is the internal work resulting from the fluctuation

itself and Rext the external work caused by the environment.

Let us now expand Rint in series around hni

RintðnÞzRintðhniÞC ðnK hniÞkBTNC
1

2
kBT

vN

vn
ðnK hniÞ2

(B3)

where

N Z
1

kBT

vRint

vn
jnZhni (B4)

is the thermodynamic force. The external work Rext must be

proportional to n-hni and thus gives

Rext ZKðnK hniÞkBTN (B5)

Inserting Eqs. (B3) and (B5) in Eq. (B1) using Eq. (B2), we

obtain for the probability of creating a fluctuation of size n

pðnÞfexp K
1

2

vN

vn
ðnK hniÞ2

� �
(B6)

Thus, we see that the probability of fluctuations in size of the

domains of crosslinks follows a Gaussian distribution of the

form

pðnÞfexp K
ðnK hniÞ2

2L2

� �
(B7)

with the standard deviation

LZ
vN

vn

� �K1=2

Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðnK hniÞ2i

p
(B8)
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